

Re	eg. No:													
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR														
(AUTONOMOUS) B.Tech III Year I Semester Regular Examinations Nov/Dec 2019														
	E	S.Tech	III Ye		Seme IGINE		-					//Dec 20	019	
				EIN			ltural				20			
Time: 3 hours Max. Marks: 60														0
	(Answer all Five Units $5 \times 12 = 60$ Marks)													
				,			UNI				,			
1	a Discuss			-							-	rnamics		6M
b Differentiate between the cyclic process and non-cyclic process. 6M OR														6M
2	a What is quasi static process? What are its characteristics features?													6M
	b What do mean by property"? Distinguish between intensive and extensive.											6M		
3	UNIT-II Derive Steady Flow Frenzy Equation for Turking													6M
3	 a Derive Steady Flow Energy Equation for Turbine b The enthalpy of a steam 3015.6 KJ/Kg enters a nozzle and leaves with an enthalpy 										enthalp v	6M		
	of 2819.8 KJ/Kg. Calculate the velocity of steam at the exit, if the velocity of steam													-
	at the e	ntry is	50 m/	sec.			OI	2						
4	a State fi	rst law	of th	nermo	dynan	nics. F			ternal	energ	gy is a	property	y of the	6M
	system.													
	b A turbine operates under steady flow conditions, receiving the steam having an enthalpy of 2786 KJ/Kg and leaves with an enthalpy of 2513 KJ/Kg. Heat is lost to												6M	
	the surroundings at the rate of 5.30 KJ/sec. If the rate of steam flows though the													
	turbine is 0.40Kg/sec. Find the power output of the turbine.													
_	- 1171		• •	•	£ 41 T	,	UNIT		- 1					\mathbf{M}
5	a What a b A rever								-			le The p	ower	6M 6M
	b A reversible power cycle is used to drive a reversible heat pump cycle. The power cycle takes in <i>Q</i> 1 heat units at <i>T</i> 1 and rejects <i>Q</i> 2 at <i>T</i> 2. The heat pump abstracts <i>Q</i> 4										0171			
								<i>T</i> 3. D	evelop	p an e	xpress	ion for t	he ratio	
	<i>Q</i> 4/ <i>Q</i> 1	in tern	ns of th	he fou	ir temp	beratu	res. OI	2						
6													00 0C,	12M
	and the ot					-	•			-	-			
	conductivity of copper is 380 W/mK. Calculate the rate of heat transfer along the rod and the rate of entropy production due to irreversibility of this heat transfer.													
	UNIT-IV													
7 a What is the gas equation of ideal gas?													6M	
	b What is Avogadro's law? OR												6M	
8	A cylinde	r Tanl	c cont	ainin	g 4 k	g of o			oxide	gas a	nt -500)C has i	nternal	12M
	8 A cylinder Tank containing 4 kg of carbon monoxide gas at -500C has international diameter of 0.2m and length of 1m.Determine the pressure exerted by the gas using (a The generalize compressibility chart (b) The ideal gas of equation of state (c) Vander											sing (a)		
	The gener Walls equ		-		ity cha	art (b)	The i	deal g	as of o	equati	on of s	state (c)	Vander	
	mans equ	u1011 U	1 state	·•										

UNIT-V

9 Write down first and second Tds equations. And derive the expression for the 12M difference in heat capacities Cp and Cv. What does the expression signify?

OR

10 In an air standard diesel cycle, the compression ratio is 16, and at the begging of isentropic compression, the temperature is 15 0C and the pressure is 0.1 MPa. Heat is added until the temperature at the end of constant pressure process is 1480 0C. Calculate (a) The Cut-off ratio (b) The heat supplied per kg of air(c) The cycle efficiency (d) the mean effective pressure.

*** END ***